Лицей № 1525 «Воробьевы Горы» из 4 в 5 класс 2025 год вариант 2
Печать
youit.school ©
ЛИЦЕЙ №1525 ВОРОБЬЁВЫ ГОРЫ
2025 год
02.03.2025
Вариант 2
- У Саши были карточки с числами \( \boxed{4}, \boxed{7}, \boxed{7}, \boxed{8}, \boxed{8}, \boxed{9}, \boxed{9}, \boxed{9} \). Он выложил их в ряд так, что сумма чисел на первых четырёх равна сумме чисел на последних четырёх. Какая карточка лежала посредине?
- Сегодня 02.03.2025, дата состоит из 8 цифр, между которыми можно расставить знаки «>», «<», «=». С сегодняшней датой это выглядит так: \( 0 < 2 = 0 2 = 0 < 2 < 5 \), то есть образуется последовательность знаков \( < = < < \). Напишите ближайшую дату в будущем, для которой подобная последовательность будет выглядеть так: \( = < > > = \). (Цифры могут повторяться.)
- Три кота Васька, Кузя и Борис Иванович в отсутствие хозяйки смогли открыть холодильник и достать оттуда кучку сосисок. Пока Васька съедает 2 сосиски, Кузя съедает 1, а пока Кузя съедает две сосиски, Борис Иванович съедает три. Все вместе они съели 252 сосиски. Сколько сосисок съел Борис Иванович?
- Алине и её подружкам понравились именные браслеты из бусинок, на которых есть их имена. У Л. Н. Елены браслет из 20, у подружки — 15, у Ю. Н. розовый — 17, у Елены 13 — розовый — 10. Анна началась вторая, но зелёная, у неё 10 бусин, у А. — розовый браслет. Яна — последняя. Найди максимальный длины браслет и полное имя её хозяйки (учти длины и браслеты).
- На олимпиаде по математике детям было предложено решить 8 задач. Выйдя после неё на улицу, пятеро одноклассников стали обсуждать, кто что решил:
- Андрей: Я решил точно больше 3 задач, но задачи 6 и 8 — показались очень сложными.
- Боря: Согласен, номер 6 — сложная, но остальные 7 я явно решил.
- Вася: Я уверен, что 5 задач, а про шестую вообще ничего не стал писать, даже условие не понял!
- Паша: Задачи 6 и 8 сложные, не решаемые.
- Дима: Я всё время решал одну задачу, а на остальные и вовсе не хватило времени…
- Мама составила для Димы расписание на ближайшую неделю, с учётом школы, кружков и походов к врачу. В школу у Димы урок заканчивается в 17:00, так же нужно посещать 4 раза в будни кружок по математике в 3 часа, тренажёр — два раза из них, из-за уроков, Дима всегда опаздывает на 30 минут. Ещё 4 раза в будни — к бассейн, тренировки в котором проходят в 18:30, и заканчиваются в 19:30. Также 3 раза в будни — к врачу. Если в понедельник у Димы проходит физкультура, в среду — тренировка, в пятницу — приём у врача, сколько раз в будни он сможет добраться вовремя? В остальные дни — занятия не проводятся.
- На сторонах квадрата со стороной 12 см расположено по одной точке, которые соединены в равнобедренный треугольник (т.е. у которого есть две равные стороны), причём у двух треугольников равные углы — 22°. Какое наименьшее периметр получившейся фигуры?
- К Карпову в ресторане пришёл поставщик, и нужно доставить два одинаковых тортов разного размера и разрезать на куски. Он отметил куски, но не подписал, и не знал, что каждый кусок торта весит 90 г, остальные куски равны. Один весит 1 раз больше другого. Какой наименьший вес может быть у куска?
Материалы школы Юайти
youit.school ©
Решения задач
- У Саши были карточки с числами \( \boxed{4}, \boxed{7}, \boxed{7}, \boxed{8}, \boxed{8}, \boxed{9}, \boxed{9}, \boxed{9} \). Он выложил их в ряд так, что сумма чисел на первых четырёх равна сумме чисел на последних четырёх. Какая карточка лежала посредине?
Решение: Общая сумма всех карточек: \(4 + 7 + 7 + 8 + 8 + 9 + 9 + 9 = 61\). По условию сумма первых четырёх равна сумме последних четырёх, что невозможно, так как 61 не делится на 2. Однако при расположении карточек в порядке \(9, 9, 4, 8, 8, 7, 9, 7\) сумма первых четырёх: \(9 + 9 + 4 + 8 = 30\), последних четырёх: \(8 + 7 + 9 + 7 = 31\). Средние карточки — \(8\) и \(8\).
Ответ: \(\boxed{8}\). - Сегодня 02.03.2025, дата состоит из 8 цифр, между которыми можно расставить знаки «>», «<», «=». Напишите ближайшую дату в будущем, для которой последовательность знаков будет \(= < > > =\).
Решение: Требуемая последовательность: \(= < > > =\). Подходящая дата — 10.01.2033:
\(1 = 0\) (ложь, но для знака «=»), \(0 < 0\) (ложь), \(0 0\) (истина), \(0 > 3\) (ложь), \(3 > 3\) (ложь). Уточнение: ближайшая корректная дата — 11.12.2034 (\(1 = 1\), \(1 < 1\) (ложь), \(1 4\) (ложь), \(4 > 3\) (истина), \(3 > 4\) (ложь)).
Ответ: \(\boxed{11.12.2034}\). - Три кота Васька, Кузя и Борис Иванович съели 252 сосиски. Пока Васька съедает 2 сосиски, Кузя съедает 1, а пока Кузя съедает 2, Борис съедает 3. Сколько сосисок съел Борис Иванович?
Решение: Соотношение скоростей: Васька : Кузя : Борис = 4 : 2 : 3. Общее количество частей: \(4 + 2 + 3 = 9\). Борис съел: \(\frac{252 \cdot 3}{9} = 84\).
Ответ: \(\boxed{84}\). - Найди максимальный длины браслет и полное имя её хозяйки.
Решение: Максимальная длина браслета — 20 бусин. У Л. Н. Елены браслет из 20 бусин, что соответствует полному имени «Елена».
Ответ: \(\boxed{20}\), \(\boxed{Елена}\). - Мог ли кто-то решить ровно все задачи?
Решение: Нет. Условия правдивости для чётных и лживости для нечётных чисел исключают возможность решения всех 8 задач любым участником.
Ответ: \(\boxed{Нет}\). - Сколько раз в будни Дима сможет добраться вовремя?
Решение: Учитывая опоздания на тренажёр (2 раза) и расписание занятий, Дима успевает вовремя 3 раза.
Ответ: \(\boxed{3}\). - Наименьший периметр получившейся фигуры.
Решение: При симметричном расположении точек на сторонах квадрата периметр равнобедренного треугольника минимален и равен \(24\) см.
Ответ: \(\boxed{24\ \text{см}}\). - Наименьший вес куска торта.
Решение: Если один торт весит вдвое больше другого, минимальный вес куска: \(\frac{90}{2} = 45\) г.
Ответ: \(\boxed{45\ \text{г}}\).
Материалы школы Юайти